

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 1 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 1

 2

 3

 4

 5

ONEM2M
TECHNICAL REPORT

Document Number TR-0038-V-0.5.0

Document Name: Developer guide: Implementing security example

Date: 2018-03-23

Abstract: The document provides a simple use case for guiding developers to
implement security when developing applications using functionalities
provided by a oneM2M service platform.

Template Version: 08 September 2015 (Dot not modify)

 6

 7

 8

 9

 10

This Specification is provided for future development work within oneM2M only. The Partners accept no 11

liability for any use of this Specification. 12

The present document has not been subject to any approval process by the oneM2M Partners Type 1. 13

Published oneM2M specifications and reports for implementation should be obtained via the oneM2M 14

Partners' Publications Offices. 15

 16

 17

18

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 2 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

About oneM2M 19

The purpose and goal of oneM2M is to develop technical specifications which address the 20

need for a common M2M Service Layer that can be readily embedded within various 21

hardware and software, and relied upon to connect the myriad of devices in the field with 22

M2M application servers worldwide. 23

More information about oneM2M may be found at: http//www.oneM2M.org 24

Copyright Notification 25

© 2018, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC). 26

All rights reserved. 27

The copyright and the foregoing restriction extend to reproduction in all media. 28

 29

Notice of Disclaimer & Limitation of Liability 30

The information provided in this document is directed solely to professionals who have the 31

appropriate degree of experience to understand and interpret its contents in accordance with 32

generally accepted engineering or other professional standards and applicable regulations. 33

No recommendation as to products or vendors is made or should be implied. 34

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS 35

TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, 36

GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO 37

REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR 38

FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF 39

INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE 40

LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY 41

THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN 42

NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER 43

INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES 44

ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN 45

THIS DOCUMENT IS AT THE RISK OF THE USER. 46

47

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 3 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Contents 48

Contents .. 3 49

1 Scope .. 4 50

2 References .. 4 51

2.1 Normative references ... 4 52

2.2 Informative references ... 4 53

3 Definitions, symbols and abbreviations ... 5 54

3.1 Definitions ... 5 55

3.2 Symbols ... 5 56

3.3 Abbreviations ... 5 57

4 Conventions .. 6 58

5 Use case .. 6 59

6 Functional architecture ... 7 60

7 Procedures and call flows ... 9 61

7.1 Security Association Establishment ... 9 62

7.1.1 Security Requirements ... 9 63

7.1.2 Provisioned Symmetric Key SAE between the Locks and the Home Gateway ... 9 64

7.1.3 Certificate-based SAE between Home Gateway and IN-CSE ... 11 65

7.1.4 MAF-based SAE between Smartphone and IN-CSE ... 12 66

7.1.5 Registration upon successful SAE ... 15 67

7.2 Authorisation ... 18 68

7.2.1 Introduction .. 18 69

7.2.2 Resource structure of the example use case ... 19 70

7.2.3 Configuration of <accessControlPolicy> resources ... 20 71

7.3 Secure communications ... 26 72

Proforma copyright release text block ... 26 73

Annex A: Security Association Establishment Message Flows ... 26 74

A.1 Introduction ... 26 75

A.2 PSK-Based Security Association Establishment .. 26 76

A.3 Certificate-Based Security Association Establishment ... 30 77

A.4 MAF-Based Security Association Establishment .. 34 78

Annex B: Generation of Certificates .. 35 79

B.1 Introduction ... 35 80

B.2 Setting up a root CA .. 35 81

B.3 Generation of CA private key and root certificate .. 37 82

B.4 Generation of end user private key and certificates .. 37 83

History .. 38 84

 85

86

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 4 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

1 Scope 87

This Technical Report aims at providing guidelines to developers to implement security as specified by oneM2M TS-88

0003 [i.4], using a simple use case as example. It addresses the initial security provisioning for enrolment with a Service 89

Provider, and the operational phase relying on a Security Association Establishment process to implement secure 90

connection and access control services for basic use cases. 91

As example, the considered use cases are implementing a home door lock service with:- 92

• Authentication 93

• Authorisation 94

• Integrity 95

• Confidentiality 96

 97

2 References 98

References are either specific (identified by date of publication and/or edition number or version number) or 99

non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 100

referenced document (including any amendments) applies. 101

2.1 Normative references 102

The following referenced documents are necessary for the application of the present document. 103

Not applicable. 104

2.2 Informative references 105

The following referenced documents are not necessary for the application of the present document but they assist the 106

user with regard to a particular subject area. 107

[i.1] oneM2M Drafting Rules (http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf) 108

[i.2] oneM2M TS-0001: "Functional Architecture". 109

[i.3] oneM2M TS-0004: "Service Layer Core protocol Specification”. 110

[i.4] oneM2M TS-0003: "Security Solutions". 111

[i.5] oneM2M TS-0011: "Common Terminology". 112

[i.6] oneM2M TR-0025: "Application Developer Guide" 113

[i.7] Stefan H. Holek: "OpenSSL PKI Tutorial", Release v1.1, 13-Aug-2017 114

[i.8] Ivan Ristić: "OpenSSL Cookbook ", Version 1.1, Oct-2013 115

[i.9] OpenSSL User Manual, https://www.openssl.org/docs/manmaster/man1/ciphers.html 116

[i.10] oneM2M TS-0032: "MAF and MEF Interface Specification" 117

 118

 119

https://www.openssl.org/docs/manmaster/man1/ciphers.html

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 5 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

3 Definitions, symbols and abbreviations 120

Delete from the above heading the word(s) which is/are not applicable. 121

3.1 Definitions 122

Clause numbering depends on applicability. 123

• A definition shall not take the form of, or contain, a requirement. 124

• The form of a definition shall be such that it can replace the term in context. Additional information 125
shall be given only in the form of examples or notes (see below). 126

• The terms and definitions shall be presented in alphabetical order. 127

For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply: 128

Definition format 129

<defined term>: <definition> 130

If a definition is taken from an external source, use the format below where [N] identifies the external document which 131
must be listed in Section 2 References. 132

<defined term>[N]: <definition> 133

example 1: text used to clarify abstract rules by applying them literally 134

NOTE: This may contain additional information. 135

3.2 Symbols 136

Clause numbering depends on applicability. 137

For the purposes of the present document, the [following] symbols [given in ... and the following] apply: 138

Symbol format 139

<symbol> <Explanation> 140

<2nd symbol> <2nd Explanation> 141

<3rd symbol> <3rd Explanation> 142

3.3 Abbreviations 143

Abbreviations should be ordered alphabetically. 144

Clause numbering depends on applicability. 145

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply: 146

Abbreviation format 147

ARIB Association of Radio Industries and Businesses 148

ATIS Alliance for Telecommunications Industry Solutions 149

CCSA China Communications Standards Association 150

ETSI European Telecommunications Standards Institute 151

TIA Telecommunications Industry Association, 152

TSDSI Telecommunications Standards Development Society 153

TTA Telecommunications Technology Association 154

TTC Telecommunication Technology Committee 155

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 6 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

4 Conventions 156

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted 157

as described in the oneM2M Drafting Rules [i.1] 158

5 Use case 159

This guide is based on a smart key use case involving front and back door locks in a home that can be remotely 160

controlled by a user's smartphone leveraging the capabilities of oneM2M. For example, the user can remotely open the 161

doors when friends, relatives, housekeeper or babysitter come to the user’s home. However, if a system of the use case 162

is not secured, attackers can easily unlock the door locks by spoofing. 163

An overview of the use case is shown in figure 5.1-1 and the main components are introduced as follows: 164

• The door locks are deployed in a home and are connected to a home gateway. 165

• The home gateway communicates with a cloud service platform allowing the door locks to be controlled 166

remotely by the smartphone. 167

• The cloud service platform supports a set of services to enable the smartphone to more easily control the door 168

locks in the home. Some examples of services include registration, discovery, data management, group 169

management, subscription/notification etc 170

• The smartphone hosts an application used to remotely control the door locks in the home and supports the 171

following capabilities: 172

◼ Discovery of door locks deployed in the home. 173

◼ Sending commands to change door lock states i.e. LOCKED and UNLOCKED. 174

◼ Retrieval of door lock states. 175

◼ Receiving notifications when certain events occurred. 176

• M2M Authentication Function (MAF) is used when employing MAF-based Security Association Establishment 177

(SAE) between field nodes and infrastructure nodes. When using Pre-Shared Key or Certificate-based SAE, 178

the MAF is not required. 179

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 7 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Cloud Service
Platform

Smartphone with
embedded application

acting as remote door lock
controller

Back Door Lock

Front Door Lock

Home Gateway

M2M Authentication
Function

 180

Figure 0.1-1 Overview of remote door locks control use case 181

 182

 183

 184

6 Functional architecture 185

 186

This clause describes how the different components of this use case can be represented by corresponding oneM2M 187

architectural entities as shown in figure 6.1-1. 188

 189

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 8 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Cloud Service
Platform

Smartphone with
embedded application
acting as a remote
door lock controller

Mcc

ADN-AE3

Mca

Front Door Lock

Back Door Lock Home Gateway

MN-AE

ADN-
AE-1

MN-CSEMca

Mca

Home Domain

ADN-
AE-2

MAFMAF

IN-CSEIN-CSE

Mmaf

Mmaf

MAF
client

MAF client

M2M Authentication
Function

 190

Figure 6.1-1 oneM2M functional architecture of remote door locks control use case 191

 192

An IN-CSE is hosted in the cloud by the oneM2M Service Provider and a MN-CSE is hosted on the Home Gateway. 193

Applications and MAF used in the current use case are classified as follows: 194

• ADN-AE1: an application embedded in Front Door Lock with capabilities to control Front Door Lock and 195

interact with the home gateway MN-CSE through Mca reference point; 196

• ADN-AE2: an application embedded in Back Door Lock with capabilities to control Back Door Lock and 197

interact with the home gateway MN-CSE through Mca reference point; 198

• ADN-AE3: an application embedded in the smartphone device with capabilities to interact directly with the 199

oneM2M service platform IN-CSE through Mca reference point used to remotely control Front Door Lock and 200

Back Door Lock; 201

• MN-AE: a gateway application embedded into the home gateway that interacts with the MN-CSE through 202

Mca reference point. 203

• MAF: M2M Authentication Function assigns symmetric keys to MAF clients on the IN-CSE and the ADN-AE3 204

through Mmaf reference point. 205

 206

 207

 208

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 9 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7 Procedures and call flows 209

7.1 Security Association Establishment 210

7.1.1 Security Requirements 211

M2M services are offered by CSEs to AEs and/or other CSEs. To be able to use M2M services offered by one CSE, the 212

AEs and/or CSEs need to be mutually identified and authenticated by that CSE, in order to provide protection from 213

unauthorized access and Denial of Service attacks. 214

This mutual authentication enables to additionally provide encryption and integrity protection for the exchange of 215

messages across a single Mca, Mcc or Mcc' reference point. In addition, communicating AEs that require similar 216

protection for their own information exchanges can be provisioned to apply the same security method to their 217

communications. This is the purpose of the Security Association Establishment (SAE) procedure. 218

When CoAP binding of oneM2M primitives is used, i.e. the Underlying Network communication uses UDP/IP 219

transport, Authentication is performed by means of a DTLS Handshake. 220

When HTTP, MQTT or WebSocket binding of oneM2M primitives is used, i.e. the Underlying Network 221

communication uses TCP/IP transport, Authentication is performed by means of a TLS Handshake. 222

For the use cases in this guideline document it is assumed that HTTP binding is employed between all applicable pairs 223

of entities (see also TR-0025 [i.6]) 224

In order to exemplify the use of all three Security Association Establishment Frameworks (SAEF) defined in TS-0003 225

[i.4] the following use cases are described: 226

- Provisioned Symmetric Key SAE between Door Locks and Home Gateway, 227

- Pre-provisioned Certificate Based SAE between Home Gateway and IN-CSE, 228

- MAF Based Symmetric Key SAEF between the smartphone and IN-CSE. 229

Communication between the MN-AE and MN-CSE internally to the Home Gateway is assumed to not require Security 230

Association Establishment. 231

 232

7.1.2 Provisioned Symmetric Key SAE between the Locks and the Home 233

Gateway 234

In this example it is assumed that authentication between the Locks (ADN-AE1 and ADN-AE2) and the Home Gateway 235

(MN-CSE) is performed using provisioned keys (Kpsa) and key identifiers (KpsaID). 236

Configuration of ADN-AE1 and ADN-AE2: 237

• The AEs are configured with the set of allowed TLS ciphersuites when using TLS-PSK as defined in clause 238

10.2.2 of TS-0003 [i.4]. The set of ciphersuites includes TLS_PSK_WITH_AES_128_CBC_SHA256. 239

• The AE is assumed to be configured with the CSE-ID of the Home Gateway which is a unique identifier within 240

the M2M-SPs domain. The CSE-ID value is assumed as mn-cse-123456. 241

• The AE is assumed to be configured with a pair of credentials (psk, psk_identity) associated with the CSE-ID. 242

An example of credential configuration is given in Table 7.1.2-1. The length of the keys Kpsa is not mandated 243

by TS-0003 [i.4] and left to implementation. In this example the key length of 8 bytes (64 bits) is chosen. The 244

key identifiers comply with the format specified in clause 10.5 of TS-0003 [i.4]. 245

Table 7.1.2-1: Example Credentials configured on ADN-AE1 and ADN-AE2 246

Entity Kpsa (hex format) KpsaID

ADN-AE1 1a2b3c4d5e6f7a8b AE123456789012-Lock@in.provider.com

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 10 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

ADN-AE2 12345678abcdefab AE123456789015-Lock@in.provider.com

 247

Configuration of MN-CSE (Home Gateway): 248

• The MN-CSE is configured with the set of allowed TLS ciphersuites when using TLS-PSK as defined in clause 249

10.2.2 of TS-0003 [i.4]. The set of ciphersuites includes TLS_PSK_WITH_AES_128_CBC_SHA256. 250

• The MN-CSE is assumed to have a psk-lookup-table with columns for (client identity, psk, psk_identity), such 251

that when a TLS client provides a particular psk_identity, then the MN-CSE uses the corresponding psk for 252

establishing a TLS session, and the client identity is associated with the established TLS session. This needs to 253

be integrated to the TLS server. Table 7.1.2-2 shows an example of credentials configured on the Home 254

Gateway to serve ADN-AE1 and ADN-AE2, containing AE-ID, KpsaID, Kpsa. A new row would need to be 255

added to this table for each additional AE allowed to register to the MN-CSE by using TLS_PSK. 256

 257

NOTE: Some open source libraries, e.g. OpenSSL, do not provide a psk-lookup-table, but do indicate a spot in 258

the source code where a psk-lookup could be implemented. The psk-look-up-table values could then be 259

provided in a configuration file. 260

 261

Table 7.1.2-2: Credentials configured on MN-CSE 262

AE-ID Kpsa (hex format) KpsaID

C-lock-AE1 1a2b3c4d5e6f7a8b AE123456789012-Lock@in.provider.com

C-lock-AE2 12345678abcdefab AE123456789015-Lock@in.provider.com

 263

Operation of ADN-AE1 and ADN-AE2 264

When the AE is triggered to establish a TLS-PSK session with the MN-CSE using some pair (Kpsa, KpsaID), the 265

following should occur automatically based on the AE’s configuration: 266

• AE’s TLS Client is triggered to perform a TLS-PSK handshake with the TLS values (psk, psk_identity) set to 267

the values of (Kpsa, KpsaID), and with the configured list of TLS ciphersuites. 268

• On completion of the TLS handshake, the AE associates the established TLS session with the MN-CSE’s CSE-269

ID. 270

 271

Operation of MN-CSE 272

The MN-CSE’ TLS Server is listening on the TLS Server port and the following should occur automatically based on 273

the MN-CSE’s configuration: 274

• A TLS handshake is started at the MN-CSE TLS Server on receiving a TLS handshake Client_Hello message. In 275

the case of the AE, this includes the list of TLS-PSK ciphersuites supported by the AE for use with the MN-276

CSE. The MN-CSE will select a ciphersuite that is also in its configured list. 277

• A later TLS handshake message will include the psk_identity element set to KpsaID. 278

• The MN-CSE’s TLS Server looks up the psk-lookup-table using KpsaID as an index, and retrieves the AE’s 279

Kpsa. If not done already, the MN-CSE queries the node’s <serviceSubscribedAppRule> resource in order to 280

check AE-ID restrictions given in the allowedAEs attribute. This procedure is described in clause 7.1.5. 281

• The MN-CSE’s TLS client continues the TLS handshake with the TLS value psk set to the value of Kpsa. 282

• On completion of the TLS handshake, the MN-CSE associates the established TLS session with the AE’s AE-283

ID. 284

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 11 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Annex A provides details for implementing the TLS handshake procedure. 285

 286

7.1.3 Certificate-based SAE between Home Gateway and IN-CSE 287

In this example, it is assumed that authentication between the Home Gateway (MN-CSE) and the IN-CSE is performed 288

using CSE-ID certificates compliant with clause 10.1 of TS-0003 [i.4], which are signed by a Certification Authority 289

(CA). The production of suitable certificates is described in Annex B. 290

Configuration of MN-CSE: 291

• The MN-CSE is configured with the set of allowed TLS ciphersuites when using certificates as defined in clause 292

10.2.3 of TS-0003 [i.4]. The set of ciphersuites includes 293

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256. 294

• The MN-CSE is assumed to be configured with a CSE-ID certificate which includes its own CSE-ID in the 295

Subject Alternative Name (subjectAltName) field (“DNS:my.example_m2mprovider.org/mn-cse-123456”). 296

The CSE-ID certificate is signed by a root CA certificate (in the considered example). 297

Table 7.1.3-1: Example credentials configured on MN-CSE 298

Entity Entity-ID private key file certificate file

MN-CSE mn-cse-123456 mn_cse_key.pem 02.pem

 299

Configuration of IN-CSE: 300

• The IN-CSE is configured with the set of allowed TLS ciphersuites when using certificates as defined in clause 301

10.2.2 of TS-0003 [i.4]. The set of ciphersuites includes 302

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256. 303

• The IN-CSE is assumed to be configured with a CSE-ID certificate which includes its own CSE-ID in the 304

Subject Alternative Name (subjectAltName) field (“DNS:my.example_m2mprovider.org/in-cse”). The CSE-305

ID certificate is signed by a root CA certificate. Acceptable CA certificates should be stored by the IN-CSE in 306

a certificate store. 307

Table 7.1.3-2: Example credentials configured on IN-CSE 308

Entity Entity-ID private key file certificate file

IN-CSE in-cse in_cse_key.pem 01.pem

 309

Operation of MN-CSE 310

When the MN-CSE is triggered to establish a TLS session with the IN-CSE, the following should occur automatically 311

based on the MN-CSE’s configuration: 312

• MN-CSE’s TLS Client is triggered to perform a TLS handshake indicating its configured list of TLS ciphersuites 313

and providing its MN-CSE certificate upon request of the TLS server to the IN-CSE. 314

• The MN-CSE verifies the certificate (chain) received from the IN-CSE by validating the signature(s) and by 315

verifying that the root certificate can be trusted. Furthermore, the MN-CSE checks if the CSE-ID included in 316

the subjectAltName field of the IN-CSEs certificate matches its configured IN-CSE ID. 317

• On completion of the TLS handshake, the MN-CSE associates the established TLS session with the IN-CSE’s 318

CSE-ID. 319

 320

Operation of IN-CSE 321

The IN-CSE’ TLS Server is listening on the TLS Server port and the following should occur automatically based on the 322

IN-CSE’s configuration: 323

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 12 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

• A TLS handshake is started at the IN-CSE TLS Server on receiving a TLS handshake Client_Hello message. In 324

the case of the MN-CSE, this includes the list of TLS ciphersuites supported by the MN-CSE for use with the 325

IN-CSE. The IN-CSE will select a ciphersuite that is also in its configured list. 326

• The IN-CSE’s TLS Server is configured 327

o to send its own certificate and (optional) certificate chain in a Certificate TLS handshake message 328

o to request the certificate from the TLS client in a Certificate Request TLS handshake message and to 329

validate this certificate 330

o to check the CSE-ID of the MN-CSE included in the MN-CSE’s certificate. If this CSE-ID is not 331

available, then the IN-CSE obtains it from the node’s <serviceSubscribedAppRule> resource. 332

• On completion of the TLS handshake, the IN-CSE associates the established TLS session with the MN-CSE’s 333

CSE-ID. 334

 335

 336

7.1.4 MAF-based SAE between Smartphone and IN-CSE 337

In this example, it is considered the case where the AE implemented on a smartphone registers to the IN-CSE using 338

MAF-based SAE. 339

It is assumed that the MAF client, associated with ADN-AE3 and implemented on the smartphone, is configured to use 340

certificate-based SAE when communicating with the MAF. The MAF Client of the IN-CSE is assumed to be already 341

registered with the MAF. The security association between AE1 and the IN-CSE is then established as illustrated in 342

figure 7.1.4-1 with the steps described below. The communication between MAF clients and the MAF is assumed to 343

comply with the MAF interface specification TS-0032 [i.10], where HTTP is used as binding protocol. JSON 344

serialization of primitives is employed. 345

AE3 IN-CSE
MAF

Client
MAF MAF

Client

1) Certificate-based SAE

2) MAF Client
Registration Request

3) MAF Client
Registration Response

4) MAF Key
Registration Request

5) MAF Key
Registration Response

ADN on Smartphone

6. Cred.
transfer

8) MAF Key Retrieval7) PSK-based SAE

9) Application Data

 346

Figure 7.1.4-1: MAF-Based Security Association Establishment 347

1. A security association between the MAF client and the MAF is established. This procedure is the same as 348

described in clause 7.1.4 and Annex A.3. In this example it is assumed that keying material to be used later on 349

in the security association between ADN-AE3 and IN-CSE is derived at both ends using the TLS key exporter 350

function (see clauses 8.2.2.3 and 8.3.5.3.7 of TS-0003 [i.4]). Further details of this procedure are described in 351

Annex A.4. 352

 Editor’s note: When a MAF client is associated with a single AE or CSE, an already existing AE-ID or CSE-353

ID certificate may be used in the TLS handshake. This would require some clarifications in TS-0003. TS-354

0003 currently mandates the use of a device certificate, which requires a device ID in subjectAltName. 355

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 13 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

2. The MAF client registers to the MAF by sending a MAF client registration request as specified in clause 8.8.2.3 356

of TS-0003 [i.4]: 357

 358
JSON serialized primitive Comments

{

 "op": 1,

 "to": "//myMAF.provider.org/-/",

 "fr": "0 2 481 1 100 3030 10011",

 "rqi": "0001",

 "ty": 3,

 "pc": {"sec:macr": {

 "et": "20181113T110000",

 "adfq": "mytrustenabler.org"

 }},

 "rcn": 7

}

(request primitive)

operation = CREATE

to = default MAFBase address

from = device id of device where MAF client is installed

request identifier, assigned by originator

resource type = <mafClientReg> to be created

content = global element name of <mafClientReg>

expirationTime = 2018-11-13 11:00:00 UTC

adminFQDN

result content = Original Resource

 359

 360

3. The MAF sends the response to the MAF client: 361

JSON serialized primitive Comments

{

 "rsc": 2001,

 "rqi": "0001",

 "pc": {"sec:macr": {

 "rn": "MACR000001",

 "ty": 3,

 "ri": "macr000001",

 "pi": "mb01",

 "ct": "20171113T110000",

 "lt": "20171113T110000",

 "et": "20181113T110000",

 "cr": "0 2 481 1 100 3030 10011",

 "adfq": "mytrustenabler.org",

 "aski":

"FF15D84E3E38D6974B0EB3E5606C85FE@myMAF.provider.org"

 }}

}

(response primitive)

response status code, CREATED

request identifier

content=global element name <mafClientReg>

resource name, assigned by MAF

resource type = <mafClientReg>

resource identifier, assigned by MAF

parent identifier, resource id of MAFBase

creation time

last modified time

expiration time, 1 year after creation

creator, MAF client id

adminFQDN, fqdn of trust enabler

key identifier

 362
 363

4. MAF key registration request as described in clause 8.8.2.7 of TS-0003 [i.4]. 364

JSON serialized primitive Comments

{

 "op": 1,

 "to": "//myMAF.provider.org/-/macr000001",

 "fr": "0 2 481 1 100 3030 10011",

 "rqi": "0002",

 "ty": 5,

 "pc": {"sec:mkr": {

 "et": "20171120T110000",

 "adfq": "mytrustenabler.org",

 "suid": 11

 }},

 "rcn": 7

}

(request primitive)

operation = CREATE

to = address of <mafClientReg> parent resource

from = device id of MAF client (= MAF client ID)

request identifier, assigned by originator

resource type = <symmKeyReg> to be created

content = global element name of <symmKeyReg>

expiration time, 1 week after creation

adminFQDN, fqdn ofd trust enabler

security usage id = MAF-based SAEF

result content = Original Resource

 365

 366

5. MAF key registration response. Note that the keyValue attribute is not returned to the MAF client as this key is 367

derived from the TLS key exporter function. 368
JSON serialized primitive Comments

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 14 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

{

 "rsc": 2001,

 "rqi": "0002",

 "pc": {"sec:mkr": {

 "rn": "SK00001",

 "ty": 5,

 "ri":

"FF15D84E3E38D6974B0EB3E5606C85FE",

 "pi": "macr000001",

 "ct": "20171113T110001",

 "lt": "20171113T110001",

 "et": "20171120T110001",

 "cr": "0 2 481 1 100 3030 10011",

 "adfq": "mytrustenabler.org",

 "suid": 11,

 "tgis": "//my.m2mprovider.org/in-cse"

 }}

}

(response primitive)

response status code, CREATED

request identifier

content=global element name <symmKeyReg>

resource name, assigned by MAF

resource type = <symmKeyReg>

resource identifier, assigned by MAF equal to

relativeKeyID, see Annex A.4

parent identifier, resource id of <mafClientReg>

creation time

last modified time

expiration time, 1 week after creation

creator, MAF client id

adminFQDN, fqdn of trust enabler

security usage id = MAF-based SAEF

list of target identifiers, registrar CSE id

Note: key value is not returned to MAF client in

this procedure

 369

6. Using the keying material established in step 1 the security credentials psk and psk_identity are transferred from 370

the MAF client to the AE (see Annex A.4 for more details). 371

7. PSK-based security association is established between AE3 and the IN-CSE, as described in clause 7.1.3 and 372

Annex A.2 using psk and psk_identity from step 6. 373

8. As part of step 7), the MAF client associated with the IN-CSE retrieves the PSK credential from the MAF which 374

is identified from the fqdn-part of the psk_identity value by means of triggering a MAF Key Retrieval 375

procedure as specified in clause 8.8.2.8 of TS-0003 [i.4]. It is assumed that a security association between IN-376

CSE's MAF client and the MAF already exists prior to execution of the MAF Key Retrieval procedure. 377

The Key Retrieval request and response primitives are shown in the Table below: 378

 379

JSON serialized primitive Comments

{

 "op": 2,

 "to": "//myMAF.provider.org/-

/FF15D84E3E38D6974B0EB3E5606C85FE",

 "fr": "//my.m2mprovider.org/in-cse",

 "rqi": "ABC28F",

 "rcn": 7

}

(request primitive)

operation = RETRIEVE

to = address of <symmKeyReg> parent resource = KcID

from = IN-CSE identifier

request identifier, assigned by originator

result content = Original Resource

{

 "rsc": 2000,

 "rqi": "ABC28F",

 "pc": {"sec:mkr": {

 "rn": "SK00001",

 "ty": 5,

 "ri":

"FF15D84E3E38D6974B0EB3E5606C85FE",

 "pi": "macr000001",

 "ct": "20171113T110001",

 "lt": "20171113T110001",

 "et": "20171120T110001",

 "cr": "0 2 481 1 100 3030 10011",

 "adfq": "mytrustenabler.org",

 "suid": 11,

 "tgis": "//my.m2mprovider.org/in-cse",

 "kv":

"37F61D5A7FEA1E9CFD8DB76D2F8B6230130EF8A84F9F9F

967DA385867984EED0"

 }}

}

(response primitive)

response status code, OK

request identifier

content=global element name <symmKeyReg>

resource name, assigned by MAF

resource type = <symmKeyReg>

resource identifier = relative Key id

parent identifier, resource id of <mafClientReg>

creation time

last modified time

expiration time, 1 week after creation

creator, MAF client id

adminFQDN, fqdn of trust enabler

security usage id = MAF-based SAEF

list of target identifiers, registrar CSE id

key value, as derived with TLS key material

exporter function

 380

9. Encrypted messages can be exchanged between AE3 and the IN-CSE. 381

 382

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 15 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.1.5 Registration upon successful SAE 383

An AE or CSE which has not registered to its registrar CSE yet, is assumed to be pre-configured such that it attempts to 384

perform a registration procedure right after the device is powered on and after it has established network connectivity. 385

In this case the first request primitive sent by an AE or CSE entity via Mca or Mcc interfaces is either a “Create <AE>” 386

or “Create <remoteCSE>” request primitive, respectively. 387

When an AE registers, the registrar CSE needs to retrieve and check the service subscription information which is 388

defined in a <m2mServiceSubscriptionProfile> instance on the IN-CSE (see clause 10.2.2.2 of TS-0001 [i.2]). 389

 390

NOTE: In the present Release, <serviceSubscribedAppRule> does not allow to validate the association between CSE 391

registrees and their applicable credential identifiers when registering to their registrar CSE. 392

 393

For the use case example illustrated in figure 6.1-1, the overall structure of service subscription information can look as 394

shown in figure 7.1.5-1. It is assumed that these resources have been configured on the IN-CSE prior to the registration 395

procedure. Their creation is out of scope of the present document. 396

 397

The instance of a <m2mServiceSubscriptionProfile> with its children and linked resources as shown in figure 7.1.5-1 398

includes all information exposed on the Mcc interface related to a service subscription of the subscriber who owns and 399

operates the considered example home network in figure 6.1-1. An <m2mServiceSubscriptionProfile> resource does not 400

include any resource-specific attributes itself. It acts as parent of all <serviceSubscribedNode> resources related to a 401

specific subscriber. Every node shown in figure 6.1-1, i.e. Front Door Lock, Back Door Lock, Smartphone, Home 402

Gateway and Cloud Infrastructure, can have an associated instance of a <serviceSubscribedNode> child resource 403

configured. However, the <serviceSubscribedNode> resource of an ADN only includes the nodeID attribute, which is 404

relevant for Device Management procedures but irrelevant in the context of the registration procedure. Therefore figure 405

7.1.5-1 shows <serviceSubscribedNode> resources related to the MN and IN only. These include in addition to the 406

nodeID attribute a CSE-ID and a ruleLinks attribute. The CSE-ID relates to the CSE of the node identified by the 407

nodeID attribute. 408

 409

The ruleLinks attribute assign <serviceSubscribedAppRule> resources to a <serviceSubscribedNode> resourcs. (in terms 410

of a list of their resourceID values). In the specific example considered here, it is assumed that there is one 411

<serviceSubscribedAppRule> resource instance configures for each AE which is allowed to register to a given CSE. 412

 413

In the example considered in figure 6.1-1, the Home Gateway (MN) hosts three registree AEs: ADN-AE1, ADN-AE2 414

and MN-AE. Therefore, the <serviceSubscribedNode> resource associated with the Home Gateway could have 3 415

different <serviceSubscribedAppRule> resources assigned, one for each AE shown in figure 6.1-1. The service 416

subscriber employs ADN-AE3 as door lock controller which registers to the IN-CSE directly. The resource tree in 417

figure 7.1.5-1 therefore also includes a <serviceSubscribedNode> resource associated with the IN. This 418

<serviceSubscribedNode> reveals nodeID and CSE-ID of the IN-CSE and it is assumed to have a ruleLink attribute 419

which includes the resource identifier of a <serviceSubscribedAppRule> resource which includes information related to 420

ADN-AE3. 421

 422

The <serviceSubscribedAppRule> resource can have 3 specific attributes: allowedCredIDs, allowedAppIDs and 423

allowedAEs. Each of these attributes generally can include a list of elements. If a <serviceSubscribedAppRule> relates 424

to a single AE only, the allowedAppIDs and allowedAEs attributes contain a single element only. 425

 426

Table 7.1.5-1 shows a suitable setting of these attributes for each of the three <serviceSubscribedAppRule> resources. 427

 428

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 16 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

For instance, the column with heading ADN-AE1, shows the attributes of the <serviceSubscribedAppRule> resource 429

which relates to ADN-AE1. In this case, the allowedAEs attribute includes the AE-ID stem to be assigned to ADN-AE1 430

by the registrar MN-CSE, which is of the form as used in the example in clause 7.1.2. The wildcard part is substituted 431

by the MN-CSE. The allowedAppIDs attribute includes the App-ID and the allowedCredIDs attribute includes security 432

credential identifiers applicable for ADN-AE1. The columns with headings ADN-AE2 and ADN-AE3 of Table 7.1.5-1 433

shows the set of applicable parameters for those respective AEs. 434

 435

At <AE> registration, information included in applicable <serviceSubscribedAppRule> resources is examined by the 436

registrar CSE and compared if it matches with security credentials employed for Security Association Establishment 437

(SAE), and App-ID and AE-ID indicated in the registration request message. 438

In case the information used by the registree does not match with the information given in applicable 439

<serviceSubscribedAppRule> resources, the registration request needs to be rejected by the registrar CSE. 440

 441

Note that if no applicable <serviceSubscribedAppRule> resources are configured, all registration requests passing 442

Security Association Establishment successfully can be granted by the registrar. 443

 444

Figure 7.1.5-2 outlines the message and processing flow related to Security Association Establishment as described in 445

clauses 7.1.2, 7.1.3 and 7.1.4 for ADN-AE1 and ADN-AE2, MN-CSE and ADN-AE3, respectively, and the subsequent 446

registration procedures, where service subscription information is evaluated. The description under the figure describes 447

each step of the message and processing sequence. 448

<m2mServiceSubscriptionProfile>

nodeID

CSE-ID

ruleLinks

<serviceSubscribedNode>

nodeID

CSE-ID

ruleLinks

<serviceSubscribedNode>

allowedCredIDs

allowedAppIDs

allowedAEs

<serviceSubscribedAppRule>

nodeID of the MN-CSE

CSE-ID of the MN-CSE

List of resource IDs of applicable

<serviceSubscribedAppRule> resources

for ADN-AE1, ADN-AE2, MN-AE

nodeID of the IN-CSE

CSE-ID of the IN-CSE

List of resource IDs of applicable

<serviceSubscribedAppRule> resources

for ADN-AE3

List of allowed AE-IDs

List of allowed credential-IDs

List of allowed App-IDs

 449

Figure 7.1.5-1: Service subscription information stored on the IN-CSE for the use case in Fig. 6.1-1 450

 451

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 17 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 7.1.5-1: Value setting of <serviceSubscribedAppRule> attributes 452

Attribute ADN-AE1 ADN-AE2 ADN-AE3

allowedCredIDs 12-AE123456789012-

Lock@in.provider.com
12-AE123456789015-
Lock@in.provider.com

32-*@myMAF.provider.org

allowedAppIDs doorlock-123 doorlock-123 lockControl-ABC12

allowedAEs C-lock-AE* C-lock-AE* C-lockControl-AE*

 453

 454

 455

ADN-AE1
or

ADN-AE2
MN-CSE IN-CSE ADN-AE3

1) SAE, clause 7.1.3

5) SAE, clause 7.1.2

2) Registration request

3) Processing Request

4) Registration response

6) Registration request

7) Processing Request

8) Registration response

10) Registration request

11) Processing Request

12) Registration response

9) SAE, clause 7.1.4

 456

Figure 7.1.5-2: Message sequence of Security Association Establishment and registration procedures 457

 458

1) A Security Association between MN-CSE and IN-CSE is established as described in clause 7.1.3 using public key 459

certificates. 460

2) The MN-CSE sends a registration request message to the IN-CSE. Note that the MN-CSE registers to the IN-CSE 461

before any AEs can register to the MN-CSE. 462

3) The IN-CSE checks the content of the registration request message (i.e. create <remoteCSE> request) as specified 463

in clause 10.2.2.6 of TS-0001 (Rel-3) and clause 7.4.4 of TS-0004 (Rel-3). 464

4) The registrar IN-CSE replies with a Registration response message. For the following steps it assumed that the 465

MN-CSE registration was successful (Response Status Code 2001 “CREATED”). 466

5) ADN-AE1 (and ADN-AE2) establish a security association with the MN-CSE using the procedure described in 467

clause 7.1.2, using symmetric key credentials. 468

6) The AE sends a registration request message to the MN-CSE. The registration request may or may not include an 469

AE-ID in the From parameter and in the <AE> resource representation included in the Content. 470

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 18 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7) The AE registration procedure in clause 10.2.2.2 of TS-0001 (Rel-3) defines different processing cases depending 471

in what information about AE-ID is provided with the request message. Here, it is assumed that the registering 472

node already has an AE-ID preconfigured. Also the App-ID of the <AE> resource is indicated in the Content of the 473

request message. In this step, the MN-CSE needs to check if there is a <serviceSubscribedNode> resource 474

configured on the IN-CSE applicable to the MN-CSE, i.e. a resource instance which includes the CSE-ID assigned 475

to the MN-CSE. This information can be obtained with a filtered retrieve request sent by the MN-CSE to its 476

registrar IN-CSE, as described in clause 10.2.2.2 of TS-0001 (Rel-3). Once retrieved, the MN-CSE needs to 477

retrieve any applicable <serviceSubscribedAppRule> resources as indicated in the ruleLinks attribute of the 478

<serviceSubscribedNode> resource. In the example considered here, the MN-AE retrieves the 479

<serviceSubscribedAppRule> with the setting for ADN-AE1 (or ADN-AE2) as shown in table 7.1.5-1. It then 480

compares whether or not: 481

(i) the AE-ID given in the allowedAEs attribute matches the AE-ID given in the registration request, 482

(ii) the App-ID given in the allowedAppIDs attribute matches the App-ID given in the Content of the 483

request, 484

(iii) the credential-ID given in the allowedCredIDs attribute matches the security credential which has been 485

used in the SAE procedure (in this example the symmetric key credential derived from KpsaID as shown 486

in table 7.1.2-1). A credential-ID included in the allowedCredIDs attribute is comprised of two parts: 487

• a credential-ID type identifier (CredIDTypeID, defined in Table 12.3.2.1-1 of TS-0003 [i.4]. In 488

this example CredIDTypeID = 12 indicates that PSK-based SAE is used. 489

• a specific identifier of the allowed security credential, which is KpsaID for the given 490

CredIDTypeID. The format of KpsaID is defined in clause 10.5 of TS-0003 [i.4]. 491

8) If any of the above checks fails, the registration request is rejected with a respective error response. If the AE 492

indicates the AE-ID and App-ID as given in the applicable <serviceSubscribedAppRule> the registration request 493

can be granted with a successful response (Response Status Code 2001 “CREATED”). 494

9) ADN-AE3 establishes a security association with the MN-CSE using the procedure described in clause 7.1.4, using 495

MAF-assigned symmetric key credentials. Note that this step and the subsequent registration procedure is 496

independent of the previous steps and can occur at any time within the message sequence. 497

10) The ADN-AE3 sends a registration request message to the IN-CSE which is assumed to include preassigned AE-ID 498

and App-ID. 499

11) Similarly, as in step 7), the IN-CSE evaluates the registration requests. Since the IN-CSE is the host of any service 500

subscription related resource, if configured, it is locally available and does not need to be retrieved via the Mcc 501

interface. The IN-CSE performs the same checks between AE-ID and allowedAEs, AppID and allowedAppIDs and 502

credential-IDs used in the SAE procedure and allowedCredIDs and as described in step 7) 503

12) If any of the above checks fails, the registration request is rejected with a respective error response. If the AE 504

indicates AE-ID and App-ID as given in the applicable <serviceSubscribedAppRule> the registration request can be 505

granted with a successful response (Response Status Code 2001 “CREATED”). 506

 507

Subsequent to successful registration, an AE can send any other request primitives. In such transactions, the receiver of 508

any request message can perform a procedure denoted AE impersonation prevention (see clause 7.2 of TS-0003 [i.4]). 509

For each received request message, the receiver checks if the AE-ID in the From parameter is associated with the 510

credentials used for security association establishment. 511

 512

7.2 Authorisation 513

7.2.1 Introduction 514

The Authorization function is responsible for controlling access to resources and services hosted by CSEs and AEs. 515

The authorization procedure requires that the originator of the resource access request message has been identified to 516

the Authentication function, and originator and receiver are mutually authenticated with each other. Mutual 517

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 19 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

authentication between adjacent entities, i.e. between registree and registrar, can be ensured by the Security 518

Association Establishment procedures as described in clause 7.1. 519

In the oneM2M system, access to resources can be controlled by assignment of access control policies to the resources. 520

Access control policies govern who (originators) can do what (operations) under which circumstances (context 521

information associated with a request). 522

Access control policies can be configured in the form of <accessControlPolicy> resources (ACP) which are statically 523

assigned to other resources by means of an accessControlPolicyID attribute. The accessControlPolicyID attribute can 524

include a list of resource identifiers of <accessControlPolicy> resources which include the access control rules 525

applicable to that resource. This is illustrated in Figure 7.2.1-1. The links refer to the elements included in the 526

accessControlPolicyID attribute. Each configured <accessControlPolicy> resource ACP1…3 includes one or more 527

ACP rule(s). Each such ACP rule who can do what under which circumstances. 528

 529

Figure 7.2.1-1: Assignment of Access Control Policies (ACP) to resources 530

The details of access control policy information and the access control mechanism are specified clause 7.1. of TS-0003 531

[i.4]. 532

This clause focuses on a simple example of configuring access control policy information adequate for the considered 533

use case. 534

More advanced access control mechanisms, which employ dynamic access control, role-based access control and 535

distributed access control are not addressed in the present version of this document. 536

 537

7.2.2 Resource structure of the example use case 538

Figure 7.2.2-1 shows an example resource tree hosted by the MN-CSE which is suitable for the door lock use case as 539

described in clauses 5 and 6. 540

The <AE> resources representing the two door locks are created at registration. The resource tree under each of these 541

<AE> resources looks the same. Therefore, the figure exemplifies only the resource structure under ADN-AE1. After 542

completion of the <AE> registration procedure it is assumed that following procedures are executed by each door lock: 543

1. Creation of a <container> resource representing the state information of the respective door lock; 544

2. Creation of a first <contentInstance> resource, which includes the actual door lock state (i.e. “locked” or 545

“unlocked”) in the content attribute, e.g. in the form of a binary representation; 546

3. Creation of a <pollingChannel> resource to be employed by the door lock AE; 547

4. Creation of a <subscription> resource under the <container> resource, which defines conditions for which a 548

notification is sent to the respective door lock application; 549

5. Creation of another <subscription> resource which defines conditions for which a notification is sent to the 550

door lock controller application. This resource is created by the door lock controller (see below). 551

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 20 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Note that the detailed procedures to create the above resources are not in the scope of the present document. These 552

procedures are described in the Applications Developer Guide TR-0025. 553

<contentInstance>

<AccessControlPolicy>

<CSEBase>

(MN-CSE)

<AE>

(ADN-AE1)

<container>

(created by ADN-AE1)

<contentInstance><contentInstance>

<subscription>

(created by ADN-AE3)

<subscription>
(created by ADN-AE1)

<AccessControlPolicy>
<AccessControlPolicy>

<pollingChannel>

<AE>

(ADN-AE2)

 554

Figure 7.2.2-1: Resource tree hosted by the MN-CSE 555

 556

The door lock controller ADN-AE3 implemented on the smartphone registers to the IN-CSE. The created <AE> 557

resource does not require <container> child resources for its function. It is assumed in this example that ADN-AE3 is 558

not request reachable and therefore requires also a <pollingChannel> child resource. In this case, after completion of 559

the <AE> registration procedure, ADN-AE3 is assumed to execute following procedures: 560

1. Creation of a <pollingChannel> resource to be employed to retrieve the <pollingChannelURI> virtual child 561

resource; 562

2. Creation of the <subscription> resource under each of the <container> resources of ADN-AE1 and ADN-AE2. 563

This <subscription> resource defines conditions for which a notification is sent to the door lock controller 564

ADN-AE3. 565

 566

 567

7.2.3 Configuration of <accessControlPolicy> resources 568

The resource types defined by the oneM2M specifications can be broadly categorized into two classes: 569

a) Resource types which have an optional accessControlPolicyID attribute. These are denoted as “regular 570

resource types” in the following (cf. clause 6.5 of TS-0004). 571

b) Resource types which do not have an optional accessControlPolicyID attribute. These are denoted as 572

“subordinate resource types” in the following (cf. clause 6.5 of TS-0004). 573

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 21 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Access control to subordinate resource types is specified on a case-by-case basis for each individual resource type in 574

TS-0001. The <accessControlPolicy> and <pollingChannel> belong into this category. 575

Resources of type <accessControlPolicy> include a selfPrivileges attribute which defines access privileges to change an 576

<accessControlPolicy> itself. 577

Resources of type <pollingChannel> are accessible by the creator of each resource instance only. 578

For “regular resource types” which do not have any accessControlPolicyID attribute assigned yet, default access 579

privileges apply. The default access privilege gives the creator unrestricted access to the resource, i.e. it allows the 580

creator of the resource to execute all possible operations defined for that resource type. 581

Access control management of “regular resource types” generally consists of two steps: 582

1. Creation of suitable <accessControlPolicy> resources 583

2. Setting of the accessControlPolicyID attribute in applicable resources 584

When an <AE> resources is created at AE registration, access control policies do not apply. Authorization is done solely 585

based on M2M service subscription information, as outlined in clause 7.1.5. 586

Thanks to the default access privilege, the originator/creator of the <AE> resource is allowed to create child resources 587

as well as children of children. This means, the resource tree shown in Figure 7.2.2-1 under the <AE> resource of ADN-588

AE1 or ADN-AE2 can be created without any <accessControlPolicy> resources assigned in the accessControlPolicyID 589

attribute. 590

However, when originators other than the creator of the <AE> resource need to be given access, then access control 591

policies are assigned. For the use case example considered here, at least access control policies areconfigured which 592

allow the door lock controller ADN-AE3 to update and retrieve the <container> resources created by the door lock 593

applications ADN-AE1 and ADN-AE2 and to create a <subscription> to these containers. 594

An <accessControlPolicy> resource contains two mandatory resource-specific attributes, denoted privileges and 595

selfPrivileges. Each of these attributes includes one or more access control rule(s). An access control rule has two 596

mandatory elements, namely accessControlOriginators and accessControlOperations. In addition, there can be up to 597

three optional elements, denoted accessControlContexts, accessControlAuthenticationFlags, and 598

accessControlObjectDetails. 599

It is focused on the mandatory elements of an access control rule first. The accessControlOriginators element of an 600

access control rule represents a list of originators (i.e. AE-IDs or CSE-IDs) which are allowed to perform operations 601

defined in the accessControlOperations element. See clause 7.1.3 and Table 7.1.3-1 in TS-0003 [i.4] for a detailed 602

description of the elements of access control rules. TS-0004 defines how the values of elements and sub-elements are 603

represented in terms of XML schema datatypes. 604

An example representation of the privileges and selfPrivileges attributes equivalent with what is denoted as “default 605

access privilege” to resources created by C-lock-AE1 looks as follows (in XML format with long names for better 606

readability): 607

 <privileges> 608
 <accessControlRule> 609
 <accessControlOriginators>C-lock-AE1</accessControlOriginators> 610

 <accessControlOperations>63</accessControlOperations> 611
 </accessControlRule> 612

 </privileges> 613
 <selfPrivileges> 614
 <accessControlRule> 615

 <accessControlOriginators>C-lock-AE1</accessControlOriginators> 616
 <accessControlOperations>63</accessControlOperations> 617

 </selfPrivileges> 618

The term default access privilege is defined in clause 9.6.1.3.2 of TS-0001 [i.2]. It enables the creator of a resource to 619

apply all applicable of operations on it. Note that once explicit access privileges are assigned to a resource in the 620

accessControlPolicyID attribute, the “default access privilege” does not apply anymore. If the default access privilege 621

should remain in place, it needs to be defined explicitly and made part of the applicable set of access control rule (either 622

as a separate <accessControlPolicy> resource, or as a specific access control rule which is included with other rules into 623

an <accessControlPolicy> resource). 624

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 22 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

The accessControlOriginators element of an access control rule is represented as a list of members which can a type as 625

given in table 7.2.3-1. 626

Table 7.2.3-1: Types of accessControlOriginators element 627

Member Type Criterion to pass this constraint

SP Domain name FQDN of a service provider’s domain, e.g. area10023.myprovider.org. All AEs and CSEs in this
domain are granted access within the accessControlOriginators constraints

originatorID a) CSE-ID, AE-ID, wildcard character ‘*’ allowed.
b) resource-ID of a <group> resource that contains the AE or CSE representing the originator,
no wildcard allowed.
Originator of the request which matches the given CSE-ID or AE-ID is granted access within
the accessControlOriginators constraints

Key word “all” Any Originators are allowed to access the resource within the accessControlOriginators
constraints

Role-ID a) Role Identifier associated with an AE /AE-ID as defined in allowedRole-ID attribute of
<serviceSubscribedAppRule>

b) Role identifier associated with an AE /AE-ID as defined in a <role> resource
Example Role-ID: 1234abcd@role-issuer.com

 628

The accessControlOperations element of an access control rule is represented as decimal number in the range of 1 … 629

63 which represents an encoded combination of permitted operations on the resource. The encoding is defined in table 630

7.2.3-1. 631

When converting the decimal number into a 6-bit binary representation, each binary digit corresponds to one specific 632

operation as illustrated in Table 7.2.3-2. A digit with value 1 or 0 means that the respective operation is allowed or 633

disallowed, respectively. In other words, the digit “1” represents a flag that the corresponding operation is permitted. 634

Table 7.2.3-2: Representation of accessControlOperations parameter 635

 636

 637

 638

 639

 640

 641

 642

For example, if CRUD operations are allowed and Notify and Discovery disallowed, the value of 643

accessControlOperations parameter needs to be set to 15 (binary: 001111). 644

CRUD and Discovery represent operations which are executed on the resource addressed in the To parameter of a 645

request primitive. A Notify request message, however, does not represent an operation on a resource. 646

A Notify request message (aka. Notification) is typically sent to an entity (AE or CSE) to inform it, that a special event 647

has occurred which the receiver of the Notification has subscribed to by means of a <subscription> resource. 648

Other use cases for Notifications include the transfer of the response primitive in reply to a request which is sent in non-649

blocking asynchronous transmission mode and the response to long polling (i.e. Retrieve request targeting at a 650

<pollingChannelURI> virtual resource). 651

See clause 7.5.1.2 of TS-0004 [1.3] for a comprehensive description of Notification use cases. 652

Notify request primitives are sent to the entity which is identified by the To parameter and denoted as notification 653

target. Notifications which are triggered by conditions defined in a <subscription> resource are sent to the notification 654

target(s) given in the notificationURI attribute of the <subscription> resource. notificationURI attribute is represented 655

as a list which can include one or more members. The applicable formats of each member of this attribute are specified 656

in clause 9.6.8 of TS-0001 [i.2]. 657

Enumeration Discov. Notify Delete Update Retrieve Create

1 0 0 0 0 0 1

2 0 0 0 0 1 0

3 0 0 0 0 1 1

… … .. … … … …

63 1 1 1 1 1 1

mailto:1234abcd@role-issuer.com

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 23 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Notification targets are represented as a oneM2M resource-ID which can be represented in various formats as defined in 658

clause 7.2 of TS-0001 [i.2]. 659

The Notify “flag” in the accessControlOriginators element is validated for every Notify request message sent to either 660

an AE or CSE. The notification target, i.e. the To parameter of a Notify request primitive is represented in the form of a 661

resource-ID of an <AE> or <remoteCSE> resource. The Notify “flag” in the accessControlOriginators element of the 662

<AE> or <remoteCSE> associated with the notification target is set to pass this access control condition. The Notify 663

“flag” indicates that the respective entity is allowed to receive Notify request messages. 664

There are several implementation options how to setup access control in a oneM2M system. If these resources are to be 665

created and managed in a standard compliant way, the natural approach is to employ an AE for this purpose. This could 666

be a special AE just serving the purpose of managing access control, or it could be implemented as an additional 667

function of an AE which also serves other purposes. 668

The oneM2M standard is not mandating a specific mechanism how to configure access control policies. The Privacy 669

Policy Manager (PPM) concept described in clause 11 of TS-0001 [i.4] represents one approach which employs an IN-670

AE service provided by an application services provider. 671

The following design options can be considered in the context of the door lock use case: 672

1) Develop a separate AE which registers to the MN-CSE directly. This could be either a separate ADN-AE or an 673

MN-AE, i.e. an AE residing on the same device as the MN-CSE. 674

2) Develop a separate AE which registers to the IN-CSE and which can access the MN-CSE. In this case it could 675

be implemented either as integral part of the door lock controller ADN-AE3 or it could be implemented as a 676

separate additional application which runs on the same ADN (smartphone) as ADN-AE3. 677

3) The AE employed for setting of access control policies is an IN-AE managed by an M2M service provider. In 678

this case management of access control policies is executed under responsibility of the M2M service provider 679

based on some agreement between the end user and service provider. 680

4) The AE may function in a fully automated manner or in a semi-automated manner requiring manual interaction 681

by a human user. If the latter case is desired, it would be useful if the device hosting the AE has capability to 682

provide a rich graphical user interface (e.g. such as a personal computer or a smart phone). 683

In the following it is considered the implementation of an AE which exclusively serves configuration of access control 684

policies. Such AE could be deployed flexibly on different M2M devices in accordance with a user’s preference. For the 685

use case considered in the present document, it is assumed that this AE is collocated with the MN-CSE on the Home 686

Gateway (MN). In the following this AE is denoted MN-AE and it is assigned the AE-ID “C-ACP-mgr”. 687

For the considered door lock use case, MN-AE provides the following basic functionality: 688

• Discovery of any AEs associated with the given example door lock service 689

• Interpretation of the function of each discovered AE (e.g. from App-ID) 690

• Creation of <accessControlPolicy> resources on the MN-CSE 691

• Setting of the accessControlPolicyID attribute 692

 693

A straightforward approach to configure access control policies via an MN-AE for the considered example M2M 694

service is outlined in the following steps: 695

1) List all resources which require assignment of access control policies. The resulting table of resources hosted 696

by the MN-CSE for the given use case looks as follows: 697

resourceType resourceName(s) Description

<CSEBase> cb1 CSEBase of MN-CSE

<AE> adnae1

adnae2

mnae

<AE> of ADN-AE1

<AE> of ADN-AE2

<AE> of MN-AE

<container> cnt1

cnt2

door lock 1 container

door lock 2 container

<subscription> subae1

subae2

subae1ae3

subscription of ADN-AE1 to door lock 1

subscription of ADN-AE2 to door lock 2

subscription of ADN-AE3 to door lock 1

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 24 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

subae2ae3 subscription of ADN-AE3 to door lock 2

 698

2) List all applicable entities (AEs and CSEs) and their identifiers (AE-IDs, CSE-IDs) from which request 699

messages can originate and define which operations each entity is allowed to do. The entity identifiers will be 700

included in the accessControlOriginator parameter. The identifier of the MN-AE is chosen to be “C-ACP-701

mgr”. The identifiers of the other entities have been assigned already in the SAEF examples in clause 7.1. The 702

applicable operations are specified with regard to the resources hosted by the MN-CSE in the table in step 1. 703

The operations are represented as a string which indicates the allowed operations (C = Create, R = Retrieve, U 704

= Update, D = Delete, N = Notify, d = discovery). the string “CRUDNd” means that all operations are allowed. 705

The string “R” means that only Retrieve is allowed. The number in parenthesis is the encoded presentaion 706

Since the door lock controller ADN-AE3 is registered to the IN-CSE, there bar access control policies related 707

to this entity on the IN-CSE. These are out of scope of this example. 708

Entity AE-ID or CSE-ID Applicable operations Comment

ADN-AE1 C-lock-AE1 cb1: R (2)

adnae1: CRUDNd (63)

cnt1; CRUDNd (63)

sub1: CRUDNd (63)

Retrieve privilege on CSEBase

“default access privilege” on all
resource created by itself, no access
privilege to any other resource

ADN-AE2 C-lock-AE2 cb1: R (2)

adnae2: CRUDNd (63)

cnt2; CRUDNd (63)

sub2: CRUDNd (63)

Retrieve privilege on CSEBase

“default access privilege” on all
resources created by itself, no access

privilege to any other resource

ADN-AE3 C-lockControl-AE3 cb1: R (2)

adnae1: Rd (34)

cnt1: CRd (35)

adnae2: Rd (34)

cnt2; CRd (35)

subae1ae3: CRUDNd (63)

subae2ae3: CRUDNd (63)

Retrieve privilege on CSEBase

Retrieve and discover door lock <AE>
resources

Create resources under door lock
<container>, Retrieve and Discover
<container>

“default access privilege” on
<subscription> resources created by
itself

MN-AE C-ACP-mgr cb1: CRd (35)

mnae: CRUDNd (63)

adnae1: CRUDNd (63)

cnt1; CRUDNd (63)

adnae2: CRUDNd (63)

cnt2; CRUDNd (63)

sub1: CRUDNd (63)

sub2: CRUDNd (63)

subae1ae3: CRUDNd (63)

subae2ae3: CRUDNd (63)

Privilege to create children and
Retrieve privilege on CSEBase

“default access privilege” on all
resource created by itself (i.e. mnae
and selfPrívileges of ACPs)

Privilege to perform all operations on
all resource requiring access control

MN-CSE mn-cse-123456 cb1: CRUDNd (63)

all operations on <CSEBase>
permitted, no other operations
required for the present use case

 709

3) Convert entries of the table derived in step 2) into appropriate sets of access control rules. 710

Combine all entity IDs which are permitted to apply the same set of operations on the same resource into an 711

access control rule (acr). 712

In the table below, acr’s are represented in a pseudo JSON format, leaving away commas, braces and quotes 713

around member names and values (see clause 8.5 of TS-0004 [i.3]). 714

Reference accessControlRule applicable to resource(s)

acr1 acor: [C-lock-AE1 C-lock-AE2 C-lockControl-AE3]

acop: 2

cb1

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 25 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

acr2 acor: [C-ACP-mgr]

acop: 35

cb1

acr3 acor: [mn-cse-123456]

acop: 63

cb1

acr4 acor: [C-lock-AE1 C-ACP-mgr]

acop: 63

adnae1

acr5 acor: [C-lockControl-AE3]

acop: 34

adnae1, adnae2

acr6 acor: [C-lock-AE2 C-ACP-mgr]

acop: 63

adnae2

acr67 acor: [C-lock-AE1 C-ACP-mgr]

acop: 63

cnt1, sub1

acr8 acor: [C-lock-AE2 C-ACP-mgr]

acop: 63

cnt2, sub2

acr9 acor: [C-lockControl-AE3]

acop: 35

cnt1, cnt2

acr10 acor: [C-lockControl-AE3 C-ACP-mgr]

acop: 63

subae1ae3, subae2ae3

acr11 acor: [C-ACP-mgr]

acop: 63

Mnae

 715

4) Merge multiple access control rules into suitable <accessControlPolicy> resources. 716

All access control rules which apply to the same resource can be combined into an individual 717

<accessControlPolicy> resource. Each distinct set of accessControlRules defines a separate 718

<accessControlPolicy> resource. 719

 720

Resource accessControlRules
resourceName of

<accessControlPolicy>

cb1 acr1, acr2, acr3 acp1

adnae1 acr4, acr5 acp2

adnae2 acr6, acr6 acp3

mnae acr11 acp4

cnt1 acr7, acr8 acp5

cnt2 acr8, acr9 acp6

sub1 acr7 acp7

sub2 acr8 acp8

subae1ae3 acr10 acp9

subae2ae3 acr10 acp9

 721

 The selfPrivileges element of each <accessControlPolicy> resource is set to the default access privilege 722

of the MN-AE, which is represented by acr10 in the table above. 723

5) Set the accessControlPolicyIDs attribute of the resources listed in the table of step 4) equal to the resource 724

identifiers of <accessControlPolicy> resources acp1 ... acp9. 725

As a result of executing the above steps, all required access control policies are setup on the MN-CSE to operate the 726

considered service in a fully oneM2M compliant way. 727

 728

 729

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 26 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.3 Secure communications 730

Once a security association is established between adjacent oneM2M nodes, all communication between these nodes is 731

secured. However, all data of request and response messages is visible in the clear to both end points of a security 732

association. Messages which need to be forwarded by an MN-CSE or IN-CSE are re-encrypted using the security 733

context established with the next-hop node. Any intermediate CSE is trusted in this communication scenario. If a 734

communication path includes CSEs which cannot be trusted, end-to-end security mechanisms need to be employed. 735

The present version of this document focuses on secure communication between adjacent nodes. Future versions will 736

also address examples of configuring end-to-end communication using the ESPrim and ESData mechanisms specified 737

in TS-0003 [i.4]. 738

 739

 740

Proforma copyright release text block 741

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or 742
template which is intended to be copied by the user. Such an element shall always start on a new page. 743

Notwithstanding the provisions of the copyright clause related to the text of the present document, oneM2M grants that 744

users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can 745

be used for its intended purposes and may further publish the completed <proformatype>. 746

<PAGE BREAK> 747

Annex A: Security Association Establishment Message 748

Flows 749

 750

A.1 Introduction 751

This Annex presents some example message flows which are useful to understand the operation of the oneM2M 752

security establishment frameworks, to verify correct operation or to identify the cause of misbehavior. 753

Some details of TLS message flows and message content depend on the employed SSL/TLS implementation. 754

Implementations of oneM2M entities will typically make use of SSL/TLS libraries to enable support of the required 755

security functions specified in TS-0003 [i.4]. Examples of open source SSL/TLS libraries include OpenSSL, gnuSSL 756

and mbed TLS. 757

Such SSL/TLS libraries implement the basic cryptographic functions and provide various utility functions such as e.g. 758

TLS clients and servers which may be executed from a command line. 759

The message flows shown here have been produced using OpenSSL Version 1.1.1-dev on an Ubuntu 14.04 computer 760

using the s_client and s_server utility functions, and employing Wireshark for capturing and analyzing the exchanged 761

data packets. Note that OpenSSL Version 1.1.0 or higher is required to support the PSK ciphers defined in RFC 5989 762

and mandated to be used by TS-0003 [i.4]. 763

The commands given in the subsections below may be used to reproduce these flows. 764

 765

A.2 PSK-Based Security Association Establishment 766

A typical flow of messages and actions for a successful PSK-Based Security Association Establishment is shown in 767

figure A.2-1. The message content described in the steps below applies to the example described in clause 7.1.2. 768

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 27 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Subsequent to TCP connection establishment (not shown in the Figure), the following messages are exchanged between 769

ADN-AE1 and the MN-CSE: 770

1. The TLS client on ADN-AE1 sends a Client Hello Handshake message which is encapsulated in a TLS Record 771

layer frame. The record layer message includes the following fields: 772

i.Record layer header fields: 773

• Content type 0x16 (Handshake) 774

• Version 0x0301 (indicating TLS 1.0) 775

• Length of the message (2 bytes, value depending on the message content) 776

ii.Application data (handshake message): 777

• Handshake Type 0x01 (Client Hello) 778

• Length of the message (3 bytes, value depending on the message content) 779

• Client Version 0x0303 (TLS 1.2) 780

• (Client) Random (32 bytes, generated by the TLS client’s pseudo random number generator (PRNG)) 781

• Length of cipher suites field (value at least 1) 782

• List of cipher suites supported by the client. It includes identifier for 783

TLS_PSK_WITH_AES_128_CBC_SHA256 (0x00ae) 784

• Extension length and Extensions (irrelevant for this example) 785

2. The TLS server handshake protocol responds with Server Hello and Server Hello Done messages. For the 786

implementation employed here, each of these messages is encapsulated into a dedicated record layer frame. 787

i.Record layer header fields: 788

• Content type 0x16 (Handshake) 789

• Version 0x0303 (indicating TLS 1.2) 790

• Length of the application data field (2 bytes, value depending on the message content) 791

ii.Application data (“Server Hello” handshake message): 792

• Handshake Type 0x02 (Server Hello) 793

• Length of the message (3 bytes, value depending on the message content) 794

• Server version 0x0303 (indicating TLS 1.2) 795

• (Server) Random (32 bytes, generated by the TLS server’s PRNG) 796

• Session-Id length (0x00, no session ID supplied) 797

• Cipher suite selected by the server is TLS_PSK_WITH_AES_128_CBC_SHA256 (0x00ae) 798

• Compression method (null, no compression) 799

• Extension length and Extensions (irrelevant for this example) 800

iii.Record layer header fields: 801

• Same as in step 2.i 802

iv.Application data (“Server Hello Done” handshake message): 803

• Handshake type 0x0e (Server Hello Done) 804

• Length of the message (0x0000, message has no content) 805

3. The TLS client responds with Client Key exchange, Change Cipher Spec, Finished messages. For the 806

implementation employed here, each of these messages is encapsulated into a dedicated record layer frame. 807

i.Record layer header fields: 808

• Same as in step 2.i 809

ii.Application data (“Client Key Exchange” handshake message): 810

• Handshake Type 0x10 (Client Key Exchange) 811

• Length of the message (3 bytes, value depending on the message content) 812

• PSK client parameters: 813

- Identity length (0x00000f in this example) 814

- PSK Identity (here binary equivalent of “Client_identity”) 815

iii.Record layer header fields: 816

• Content type 0x14 (Change Cipher Spec) 817

• Version 0x0303 (TLS 1.2) 818

• Length of the message (0x0001) 819

iv.Application data (“Change Cipher Spec” message): 820

• Change Cipher Spec message 0x01 (1 byte) 821

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 28 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

v.Record layer header fields: 822

• Same as in step 2.i 823

vi.Application data (encrypted “Finished” handshake message) 824

• Handshake type 0x14 (Finished) 825

• Length of the message 0x00000c (12) 826

• Verify Data (12 bytes), see RFC 5246, section 7.4.9. 827

4. The server retrieves Kpsa associated with the PSK Identity, computes the master secret and authenticates the 828

client by validating Verify Data 829

5. The TLS server responds with New Session Ticket, Change Cipher Spec, Finished messages. For the 830

implementation employed here, each of these messages is encapsulated into a dedicated record layer frame. 831

i.Record layer header fields: 832

• Same as in step 2.i 833

ii.Application data (“New Session Ticket” handshake message): 834

• Handshake Type 0x04 (New Session Ticket) 835

• Length of the message (3 bytes: 0x0000b6) 836

• Session Ticket: 837

- Lifetime Hint (4 bytes: 0x00001c20, 7200 in this example) 838

- Session Ticket Length (2 bytes, 0x00b0, 176 in this example) 839

- Session Ticket (176 bytes), see RFC 4507, server session state enabling session resumption 840

iii.Record layer header fields: 841

• Content Type 0x14 (Change Cipher Spec) 842

• Version 0x0303 (TLS 1.2) 843

• Length of the message (0x0001) 844

iv.Encrypted application data (“Change Cipher Spec” message): 845

• Change Cipher Spec message 0x01 (1 byte) 846

v.Record layer header fields: 847

• Same as in step 2.i 848

vi.Application data (encrypted “Finished” handshake message, to verify that the key exchange 849

and authentication processes were successful): 850

• Handshake Type 0x14 (Finished) 851

• Length of the message 0x00000c (12) 852

• Verify Data (12 bytes), see RFC 5246, section 7.4.9. 853

6. The client authenticates the server by validating Verify Data 854

7. Application data encrypted by the TLS record layer is exchanged between ADN-AE1 and MN-CSE 855

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 29 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

ADN-AE1 MN-CSE

7. Application data

1. Client Hello

2. Server Hello, Server Hello Done

3. Client Key Exchange, Change Cipher Spec,
Finished

5. New Session Ticket, Change Cipher Spec,
Finished

4. Server retrieves Kpsa and
authenticates the client

6. Client authenticates the
server

856
 857

Figure A.2-1: PSK-Based Security Association Establishment 858

 859

The message flow described above (excluding step 7) can be reproduced with the following commands under Linux OS 860

using localhost IP address and port 443: 861

TLS server on MN-CSE: 862

$ sudo openssl s_server -accept 443 -psk 1a2b3c4d5e6f7a8b 863

TLS Client on ADN-AE1: 864

$ openssl s_client -connect 0.0.0.0:443 -psk_identity Client_identity \ 865

 -psk 1a2b3c4d5e6f7a8b -cipher PSK-AES128-CBC-SHA256 866

 867

NOTE: The OpenSSL s_server utility does not support table lookup of pre-shared keys when using the option 868

 -psk_identity AE123456789015-Lock@in.provider.com 869

as required for the example in clause 7.1.2. Therefore, the above command line for the server includes the 870

used PSK itself. The client command line provides the PSK identity “Client_identity” which is expected by 871

the server for this PSK. 872

Note that in order to enable Wireshark to decrypt application data which has been encrypted by the TLS record layer, it 873

is configured as follows: 874

In the Wireshark configuration menu Edit -> Preferences -> Protocols -> SSL, 875

1) In the “Pre-Shared-Key” field, enter Kpsa, i.e. 1a2b3c4d5e6f7a8b 876

2) In the (Pre)-Master-Secret log filename field, enter the name of a text file which includes Client Random (32 877

bytes as 64 hex characters) and the Master Secret (48 bytes as 96 hex characters) as a text line as follows: 878

 CLIENT_RANDOM <space> 64-characters-random <space> 96-characters-Master-Secret 879

The master secret is provided as log information in the terminal window, where s_client is started. The value of Client 880

Random can be retrieved from the Wireshark packet capture in the Client Hello handshake message. 881

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 30 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 882

First the data captured with Wireshark is stored into a file. Then, after configuring Wireshark as described above, the 883

messages in the saved data file can be decrypted by Wireshark. 884

 885

Editor’s note: relation between credential identifiers, entity identifiers and service subscription information needs to be 886

clarified 887

 888

A.3 Certificate-Based Security Association Establishment 889

Figure A.3-1 shows a typical flow of messages and actions for a successful certificate-based Security Association 890

Establishment. The message content, i.e. the names of certificate files, private key files and CSE identifiers, described 891

in the steps of the message flow, corresponds to the example described in clause 7.1.3. 892

Subsequent to TCP connection establishment (not shown in the Figure), the following messages are exchanged between 893

ADN-AE1 and the MN-CSE: 894

1. The TLS client on MN-CSE sends a Client Hello Handshake message which is encapsulated in a TLS Record layer 895

frame. The record layer message includes the following fields: 896

i. Record layer header fields: 897

• Content type 0x16 (Handshake) 898

• Version 0x0301 (indicating TLS 1.0) 899

• Length of the message (2 bytes, value depending on the message content) 900

ii. Application data (handshake message): 901

• Handshake Type 0x01 (Client Hello) 902

• Length of the message (3 bytes, value depending on the message content) 903

• Client Version 0x0303 (TLS 1.2) 904

• (Client) Random (32 bytes, generated by the TLS client’s pseudo random number generator (PRNG)) 905

• Length of cipher suites field 906

• List of cipher suites supported by the client. This list includes 907

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 (0xc023) 908

• Extension length and Extensions (includes ec_point_formats, eliptic_curves, SessionTicket TLS, 909

signature_algorithms) 910

2. The TLS server handshake protocol responds with Server Hello, Certificate, Server Key Exchange, Certificate 911

Request and Server Hello Done messages. For the implementation employed here, each of these messages is 912

encapsulated into a dedicated record layer frame. 913

i. Record layer header fields: 914

• Content type 0x16 (Handshake) 915

• Version 0x0303 (indicating TLS 1.2) 916

• Length of the application data field (2 bytes, value depending on the message content) 917

ii. Application data (“Server Hello” handshake message): 918

• Handshake Type 0x02 (Server Hello) 919

• Length of the message (3 bytes, value depending on the message content) 920

• Server version 0x0303 (indicating TLS 1.2) 921

• (Server) Random (32 bytes, generated by the TLS server’s PRNG) 922

• Session-Id length (0x00, no session ID supplied) 923

• Cipher suite selected by the server, should be TLS_PSK_WITH_AES_128_CBC_SHA256 (0x00ae) 924

• Compression method (null, no compression) 925

• Extension length and Extensions (only extension types included, irrelevant for this example) 926

iii. Record layer header fields: 927

• Same as in step 2.i 928

iv. Application Data (“Certificate” handshake message): includes IN-CSE certificate and the Certificate 929

• Handshake type 0x11 (Certificate) 930

• Length of the message (3 bytes, value is 1224, for the given certificates) 931

• Certificate length (3 bytes) 932

• Certificate (601 bytes): MN-CSE certificate 933

• Certificate length 3 bytes 934

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 31 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

• Certificate 614 bytes: IN-CSE certificate 935

v. Record layer header fields: 936

• Same as in step 2.i 937

vi. Application Data (“Server Key Exchange” handshake message): 938

• Handshake type 0x0c (Server Key Exchange) 939

• Length of the message (3 bytes) 940

• EC Diffie-Hellman Server Parameters 941

vii. Record layer header fields: 942

• Same as in step 2.i 943

viii. Application Data (“Certificate Request” handshake message): 944

• Handshake type 0x0d (Certificate Request) 945

• Length of the message (3 bytes) 946

• Certificate Types, Signature Hash Algorithms 947

• Distinguished Names, includes the issuer of the certificate 948

ix. Record layer header fields: 949

• Same as in step 2.i 950

x. Application data (“Server Hello Done” handshake message): 951

• Handshake type 0x0e (Server Hello Done) 952

• Length of the message (0x0000, message has no content) 953

3. The TLS client validates the certificate (chain) received from the TLS server. 954

The client validates the signature(s) of the certificate(s) and checks if it can trust the root certificate. 955

4. The TLS client responds with Certificate, Client Key exchange, Certificate Verify, Change Cipher Spec, Finished 956

messages. For the implementation employed here, each of these messages is encapsulated into a dedicated record 957

layer frame. 958

i. Record layer header fields: 959

• Same as in step 2.i 960

ii. Application data (“Certificate” handshake message): 961

• Handshake Type 0x0b (Certificate) 962

• Length of the message (3 bytes, value depending on the message content, 608 bytes in this example) 963

• Certificates length (3 bytes, length of certificate chain, value is 605 bytes for the given certificate 964

02.pem) 965

• Certificate length (3 bytes, value is 602 bytes for the certificate given in 02.pem) 966

• Certificate (ASN.1 DER encoded binary representation of the certificate included in 02.pem) 967

iii. Record layer header fields: 968

• Same as in step 2.i 969

iv. Application data (“Client Key Exchange” handshake message): 970

• Handshake Type 0x10 (Client Key Exchange) 971

• Length of the message (3 bytes, value depending on the message content) 972

• PSK client parameters: 973

- Identity length (0x00000f in this example) 974

- PSK Identity (here binary equivalent of “Client_identity”) 975

vii. Record layer header fields: 976

• Same as in step 2.i 977

viii. Application data (“Certificate Verify” handshake message): 978

• Handshake Type 0x0f (Certificate Verify) 979

• Length of the message (3 bytes, value depending on the message content) 980

• Signature hash algorithm (ECDSA with SHA256, Signature Length (72 bytes) and Signature of all 981

sent or received handshake messages of the current TLS handshake, see Section 7.4.8 of RFC5246 982

v. Record layer header fields: 983

• Same as in step 2. 984

vi. Application data (“Change Cipher Spec” message): 985

• Change Cipher Spec message 0x01 (1 byte) 986

vii. Record layer header fields: 987

• Same as in step 2.i 988

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 32 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

viii. Application data (encrypted “Finished” handshake message) 989

• Handshake type 0x14 (Finished) 990

• Length of the message 0x00000c (12) 991

• Verify Data (12 bytes), see RFC 5246, section 7.4.9. 992

5. The server validates the certificate (chain) received from the client. 993

6. The TLS server responds with New Session Ticket, Change Cipher Spec, Finished messages. For the 994

implementation employed here, each of these messages is encapsulated into a dedicated record layer frame. 995

i. Record layer header fields: 996

• Same as in step 2.i 997

ii. Application data (“New Session Ticket” handshake message): 998

• Handshake Type 0x04 (New Session Ticket) 999

• Length of the message (3 bytes: 0x0000b6) 1000

• Session Ticket: 1001

- Lifetime Hint (4 bytes: 0x00001c20, 7200 in this example) 1002

- Session Ticket Length (2 bytes, 0x00b0, 176 in this example) 1003

- Session Ticket (176 bytes), see RFC 4507, server session state enabling session resumption 1004

iii. Record layer header fields: 1005

• Content Type 0x14 (Change Cipher Spec) 1006

• Version 0x0303 (TLS 1.2) 1007

• Length of the message (0x0001) 1008

iv. Encrypted application data (“Change Cipher Spec” message): 1009

• Change Cipher Spec message 0x01 (1 byte) 1010

v. Record layer header fields: 1011

• Same as in step 2.i 1012

vi. Application data (encrypted “Finished” handshake message, to verify that the key exchange and 1013

 authentication processes were successful): 1014

• Handshake Type 0x14 (Finished) 1015

• Length of the message 0x00000c (12) 1016

• Verify Data (12 bytes), see RFC 5246, section 7.4.9. 1017

7. The client authenticates the server by validating the Verify Data field and by matching of the CSE-ID in the 1018

subjectAltName field with its preconfigured registrar CSE-ID. Also, the server may check if the client’s MN-CSE-1019

ID given in the subjectAltName field of the client certificate is already registered or is allowed to register to the IN-1020

CSE (e.g. by checking if there is a <serviceSubscribedNode> resource instance which includes this MN-CSE ID. 1021

8. Service Layer data encrypted by the TLS record layer is exchanged between MN-CSE and IN-CSE 1022

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 33 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

MN-CSE IN-CSE

8. Service Layer data

1. Client Hello

2. Server Hello, Certificate, Server Key Exchange,
Certificate Request, Server Hello Done

4. Certificate, Client Key Exchange,
Certificate Verify, Change Cipher Spec, Finished

6. New Session Ticket, Change Cipher Spec,
Finished

5. Server validates the client ’s
certificate (chain)

3. Client validates the server’s
certificate (chain)

7. Client authenticates the
server

7. Server authenticates the
client

1023
 1024

Figure A.3-1: Certificate-Based Security Association Establishment 1025

 1026

The message flow described above (excluding step 7) can be reproduced with the following commands under Linux OS 1027

using localhost IP address and port 443 (it is assumed that path names apply and CSE-certificates are available in the 1028

directory from where this command is issued): 1029

TLS server on IN-CSE: 1030

$ sudo openssl s_server -accept 443 -Verify 1 -key in_cse_key.pem \ 1031

 -cert 01.pem -CApath ./demoCA -CAfile ./demoCA/cacert.pem 1032

TLS client on MN-CSE: 1033

$ openssl s_client -connect 0.0.0.0:443 -key mn_cse_key.pem -cert 02.pem \ 1034
 -verify 1 –cipher ECDHE-ECDSA-AES128-SHA256 \ 1035
 -CApath ./demoCA -CAfile ./demoCA/cacert.pem 1036

 1037

 1038

 1039

NOTE: CipherSuite TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 = {0xC0,0x23} as defined in 1040

RFC5989 is denoted ECDHE-ECDSA-AES128-SHA256 in openssl [i.9] 1041

 1042

Note that in order to enable Wireshark to decrypt application data which has been encrypted by the TLS record layer, it 1043

is configured as follows: 1044

In the Wireshark configuration menu Edit -> Preferences -> Protocols -> SSL, 1045

• In the (Pre)-Master-Secret log filename field, enter the name of a text file which includes Client Random (32 1046

bytes as 64 hex characters) and the Master Secret (48 bytes as 96 hex characters) as a text line as follows: 1047

 CLIENT_RANDOM <space> 64-characters-random <space> 96-characters-Master-Secret 1048

The master secret is provided as log information in the terminal window, where s_client is started. The value of Client 1049

Random (comprised of GMT Time (4 bytes/8 hex chars) plus Random (28 bytes/56 hex chars)) can be retrieved from 1050

the Wireshark packet capture in the Client Hello handshake message. 1051

 1052

 1053

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 34 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

A.4 MAF-Based Security Association Establishment 1054

In MAF-based Security Association Establishment between two oneM2M entities (i.e. AEs and CSEs) symmetric key 1055

credentials are employed which have been established with a preceding procedure on a MAF. This key establishment 1056

procedure corresponds to steps 1 to 6 in the example described in clause 7.1.4. 1057

Step 1 of the procedure in clause 7.1.4 represents a certificate-based TLS-handshake between MAF client and MAF 1058

where in addition the keying material exporter function as defined in RFC 5705 (RFC 65705) is enabled. 1059

The handshake message flow of this step can be produced with the following commands under Linux OS using a DNS-1060

resolvable MAF-FQDN myMAF.provider.org and port 443 (it is assumed that path names apply and certificates are 1061

available in the directory from where this command is issued): 1062

TLS server on MAF with example FQDN myMAF.provider.org: 1063

$ sudo openssl s_server -accept 443 -Verify 1 -key maf_key.pem \ 1064

 -cert maf_cert.pem -CApath ./demoCA -CAfile ./demoCA/cacert.pem \ 1065
 -keymatexport EXPORTER-oneM2M-Connection -keymatexportlen 48 1066

TLS client on MAF client associated with AE3: 1067

$ openssl s_client -connect myMAF.provider.org:443 -key maf_client_key.pem \ 1068
 -cert maf_client_cert.pem -verify 1 –cipher ECDHE-ECDSA-AES128-SHA256\ 1069
 -keymatexport EXPORTER-oneM2M-Connection -keymatexportlen 48 1070

 1071

At both TLS endpoints, openssl produces an output such as the following (example): 1072
Keying material exporter: 1073
 Label: 'EXPORTER-oneM2M-Connection' 1074
 Length: 48 bytes 1075
 Keying material: FF15D84E3E38D6974B0EB3E5606C85FE 1076
 37F61D5A7FEA1E9CFD8DB76D2F8B6230 1077
 130EF8A84F9F9F967DA385867984EED0 1078

The value of Keying material is a 48 byte array represented as a 96-character hexadecimal string which is divided 1079

into two parts: 1080

• upper 16 bytes (32 hex characters), denoted as Connection Key Identifier (KcID): 1081

o FF15D84E3E38D6974B0EB3E5606C85FE 1082

• lower 32 bytes (64 hex characters), denoted as M2M Secure Connection Key (Kc): 1083

o 37F61D5A7FEA1E9CFD8DB76D2F8B6230130EF8A84F9F9F967DA385867984EED0 1084

 1085

From KcID, the Key Identifier is derived as follows (see clause 10.3.5 of TS-0003 [i.4]): 1086

Key Identifier = RelativeKeyID@MAF-FQDN 1087

where RelativeKeyID = hexBinary(KcID) and MAF-FQDN is the domain name of the MAF on which the key Kc 1088

which is associated with the Key Identifier is registered. For the above example of MAF-FQDN and KcID, the Key 1089

Identifier is derived as: 1090

hexBinary(0xFF15D84E3E38D6974B0EB3E5606C85FE) = 'FF15D84E3E38D6974B0EB3E5606C85FE' 1091

Key Identifier: 'FF15D84E3E38D6974B0EB3E5606C85FE@myMAF.provider.org' 1092

Note that the value of the resourceID attribute of <symmKeyReg> resources instances hosted on the MAF identified by 1093

MAF-FQDN is set to the RelativeKeyID. 1094

The hexadecimal representation of the key Kc associated with this Key Identifier will be stored in the keyValue attribute 1095

of a <symmKeyReg> resource instance, which is created in step 4 of the message sequence given in Figure 7.1.4-1. 1096

1097

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 35 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 1098

Annex B: Generation of Certificates 1099

B.1 Introduction 1100

This Annex describes how to generate certificates which are compliant with the requirements defined in TS-0003 [i.4]. 1101

Generation of certificates requires setting up a simple Public Key Infrastructure (PKI). It is outlined here how this can 1102

be accomplished using OpenSSL. For simplicity a root CA is setup which employs a self-signed root certificate to sign 1103

all end user’s certificates. The end users of the certificates in the present context refer to AEs or CSEs. 1104

The private keys and certificates need to be deployed in AEs and CSEs in a secure way. Private keys require special 1105

protection on devices. They should be stored and be employed for security procedures in a secure environment. Note 1106

that these aspects are not addressed in this Annex. A simple way to protect keys is to store them in password protected 1107

files. However, for simplicity, in the following procedures this feature is not used. 1108

Furthermore, the following conditions and conventions apply: 1109

• all generated keys support elliptic curve Diffie-Hellman encryption (ECDHE) and elliptic curve digital signature 1110

Algorithm (ECDSA), 1111

• all keys and certificates are generated in Privacy-Enhanced Mail (PEM) format and are stored in files with 1112

extension .pem, 1113

• the described examples have been tested using OpenSSL v1.1.1-dev under a Ubuntu 14.04 LTS operating system. 1114

Note that any addresses used in the examples shown in the present annex, e.g. in the issuer and subject fields of the 1115

generated certificates, are just arbitrary examples not applicable for real implementations. 1116

B.2 Setting up a root CA 1117

When installing OpenSSL on a Linux computer, a configuration file openssl.cnf is created by default in the directory 1118

/etc/ssl. 1119

The information in openssl.cnf defines sets of parameters which are applied by default by the openssl command line 1120

utility functions. Additional information on OpenSSL PKI and certificate generation can be found in [i.7] and [i.8]. 1121

The following section should be included into the default version of openssl.cnf to get the commands shown below and 1122

in clause B.3 to work properly: 1123

 1124

1125

[ca] 1126

default_ca = CA_default # The default ca section 1127

 1128

1129

[CA_default] 1130

 1131

dir = ./demoCA # Where everything is kept 1132

certs = $dir/certs # Where the issued certs are kept 1133

crl_dir = $dir/crl # Where the issued crl are kept 1134

database = $dir/index.txt # database index file. 1135

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 36 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

unique_subject = no # Set to 'no' to allow creation of 1136

 # several certificates with same subject. 1137

new_certs_dir = $dir/newcerts # default place for new certs. 1138

certificate = $dir/cacert.pem # The CA certificate 1139

serial = $dir/serial # The current serial number 1140

crlnumber = $dir/crlnumber # the current crl number 1141

 # must be commented out to leave a V1 CRL 1142

crl = $dir/crl.pem # The current CRL 1143

private_key = $dir/private/cakey.pem # private key of the root cert 1144

 1145

RANDFILE = $dir/private/.rand # private random number file 1146

 # (not used in the present example) 1147

x509_extensions = usr_cert # The extensions to add to the cert 1148

 1149

[signing_policy] 1150

countryName = optional 1151

stateOrProvinceName = optional 1152

localityName = optional 1153

organizationName = optional 1154

organizationalUnitName = optional 1155

commonName = supplied 1156

emailAddress = optional 1157

subjectAltName = supplied 1158

 1159

 1160

Create or change to some existing directory, where the tree containing private keys and certificates should originate. 1161

From this directory, execute the following commands: 1162

$ mkdir demoCA 1163

$ mkdir demoCA/newcerts 1164

$ mkdir demoCA/private 1165

$ sh -c "echo '01' > ./demoCA/serial" 1166

$ touch ./demoCA/index.txt 1167

These commands create the directory structure and the files which control the generation of the serial number of the 1168

certificates. The serial number of the end user certificates created by the CA will be incremented starting from 01. 1169

 1170

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 37 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

B.3 Generation of CA private key and root certificate 1171

The command given below generates a CA key in a file cakey.pem with implicit elliptic curve parameters from the 1172

curve named secp256r1 (note that OpenSSL uses curve prime256v1 which is the same as secp256r1): 1173

$ openssl ecparam -name secp256r1 -genkey -out cakey.pem 1174

The command below generates a self-signed root certificate with the name cacert.pem: 1175

$ openssl req -new -x509 -extensions v3_ca -key cakey.pem -subj 1176
"/C=US/ST=California/O=Trusted Certificate 1177

Authority/CN=mtrusted_ca.com/emailAddress=service@trusted_ca.com" -out cacert.pem -days 1178
3650 1179

The private key and certificate files need be moved into the directories as configured in openssl.cnf: 1180

$ mv cakey.pem demoCA/private/. 1181

$ mv cacert.pem demoCA/. 1182

 1183

B.4 Generation of end user private key and certificates 1184

This clause shows commands which generate the end user certificates which are signed by the root CA. These 1185

certificates are employed in the example described in Annex A.3 by the IN-CSE and MN-CSE. The Subject Alternative 1186

Name of these certificates include the CSE-IDs of the IN-CSE and MN-CSE, respectively. 1187

The following commands generate the key files: 1188

$ openssl ecparam -name secp256r1 -genkey -out in_cse_key.pem 1189

$ openssl ecparam -name secp256r1 -genkey -out mn_cse_key.pem 1190

The following commands generate signing requests (CSRs) for the IN-CSE and MN-CSE certificates: 1191

$ openssl req -new -extensions SAN -key in_cse_key.pem -subj 1192

"/C=US/ST=California/O=MY_M2M_PROVIDER, Inc./CN=my.m2mprovider.org" -reqexts SAN -config 1193
<(cat /etc/ssl/openssl.cnf <(printf "[SAN]\nsubjectAltName=DNS:my.m2mprovider.org/in-1194

cse")) -out in_cse_cert.csr -days 365 1195

$ openssl req -new -extensions SAN -key mn_cse_key.pem -subj 1196
"/C=US/ST=California/O=MY_M2M_PROVIDER, Inc./CN=my.m2mprovider.org" 1197

-reqexts SAN -config <(cat /etc/ssl/openssl.cnf <(printf 1198

"[SAN]\nsubjectAltName=DNS:my.m2mprovider.org/mn-cse")) -out mn_cse_cert.csr -days 365 1199

The following command generate the signed IN-CSE certificate from the CSR. This produces a 1200

certificate ./demoCA/newcerts/01.pem: 1201

$ openssl ca -in in_cse_cert.csr -policy signing_policy -config /etc/ssl/openssl.cnf -1202

extensions SAN -config <(cat /etc/ssl/openssl.cnf <(printf 1203

"[SAN]\nsubjectAltName=DNS:my.m2mprovider.org/in-cse")) -verbose 1204

The following command generate the signed MN-CSE certificate from the CSR. This produces a 1205

certificate ./demoCA/newcerts/02.pem: 1206

$ openssl ca -in mn_cse_cert.csr -policy signing_policy -config /etc/ssl/openssl.cnf 1207

-extensions SAN -config <(cat /etc/ssl/openssl.cnf <(printf 1208
"[SAN]\nsubjectAltName=DNS:my.m2mprovider.org/mn-cse-123456")) -verbose 1209

The private keys and certificates would need to be deployed on the end entities (i.e. IN-CSE with CSE-ID = in-cse and 1210

MN-CSE with CSE-ID = mn-cse-123456). 1211

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 38 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

For testing of certificate-based TLS-handshake as described in Annex A.3, these certificates and private keys may be 1212

copied into the directory from where the opennssl s_server and s_client commands given in Annex A.3 are executed. 1213

 1214

 1215

History 1216

This clause shall be the last one in the document and list the main phases (all additional information will be removed at 1217
the publication stage). 1218

Publication history

V.1.1.1 <dd Mmm yyyy> <Milestone>

 1219

 1220

Draft history (to be removed on publication)

V.0.0.1 05 December 2016 Initial skeleton

V0.1.0 21 February 2017 Integration of contributions agreed during TP 27:

SEC-2017-0009R02

SEC-2017-0020R02

SEC-2017-0021R02

V0.2.0 05 April 2017 Integration of contributions agreed during TP 28:

TST-2017-0097R01

V0.2.1 09 October 2017 Integration of contributions agreed during TP 28:

SEC-2017-0138R01

V0.3.0 04 December 2017 Integration of contributions agreed during TP 32:

TST-2017-0259R02

V0.4.0 30 January 2018 Integration of contributions agreed during TP 33:

TST-2018-0010R03

V0.5.0 23 March 2018 Integration of contributions agreed during TP 34:

TST-2018-0038R03-TR-0038

 1221

 1222

