

4 - Towards Semantic IoT, oneM2M Base Ontology

Dr. Mahdi Ben Alaya

Founder & CEO, Sensinov

benalaya@sensinov.com www.sensinov.com

November 14, 2016

Do we really need semantic ?

- oneM2M Release-1 ensure interoperability at the level of communications.
- Data is treated as black boxes. The content is opaque and applications have to a-priori know how to interpret the data.
- The consumer is programmed or configured for certain consumers. No data interoperability.

Beforehand agreement required

3

- It is required to learn information model of each device before using it.
- Beforehand agreement on the data representation is needed between applications and devices.
- Hard to integrate and deal with existing legacy devices.
- Can work in small and closed environment. But does not scale!

Can XML/JSON do the job ?

- Human can understand XML-Documents.
 - Intuitively clear for human.
 - Tag names provide semantic meaning since they are domain-terms.
- Machines do not have intuition.
 - Tag names do not provide semantics for machines.
 - XML defines the structure and lacks of semantic model.

Semantic gap between machines

- Which words shall we use to describe a given set of concepts?
- A common vocabulary is required for IoT to bridge the semantic gap between machines.
- Semantic technologies must be used to solve these issues.

From data to decision

• Collecting data is not sufficient, only your ability to convert data into decisions that gives you the edge.

Levels of meaningfullness

- There is not just one single level of semantics that could be attached to a raw data element.
- Different levels of meaningfulness can be identified to describe data and device descriptions.

The cost of semantic clarity

- Ontologies provides the highest level of semantic clarity however they are costly in terms of time and money.
- Is it reasonable to use ontologies ?

The cost of data integration

9

- Ontology-driven approaches provides a lower costs when dealing with high number of data sources.
- It ensure interoperability for open and big environments.

Semantic web and ontologies

- "The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in co-operation."
 Tim Berners-Lee et al, 2001
- The term ontology is originated from philosophy. It is a formal specification of a domain including concepts and their relationships, attributes and some logical restrictions.
- Example:

Semantic web building blocs

- URI/IRI: Almost everyting is a URI.
- RDF/XML: Facts and relations organized in triples. mimic natural language sentences. Directed graph
- RDFS/OWL: Describe taxonomies and classification networks.
- SPARQL: Ontology querying: Select, Update, Construct, etc.)

Semantic IoT vs Semantic Web

- Semantic Web:
 - Relatively static content.
 - E.g. Semantic Wikipedia (dbpedia), annotated pages, etc.
- Seamantic IoT
 - Highly dynamic environment.
 - the meaning of data and the annotations can change frequently over time/space.
 - E.g. fleet tracking, patient monitoring, etc.
- The semantic IoT is more complex to manage than semantic web. It requires continuous monitoring, pre-processing, filtering, aggregation, annotation and integration.

Semantic IoT goals

- Effective data interoperability between devices and applications. Communication without any prior agreement.
- Generic interworking and automated management of resources.
- Semantic discovery and data querying.
- Semantic matching and binding of devices and applications.
- Semantic reasoning to infer new knowledge from a set of asserted facts.
- Better monitoring and understanding of the surrounding environment.
- Make smart decisions and dynamically adapt to environments changes.

Towards semantic IoT model

- We have good models and description frameworks. RDF, OWL, SPARQL
- Having good models and developing ontologies is not enough.
- Think of the applications and use-cases before starting to annotate the data.
- Semantic descriptions are intermediary solutions, not the end product.
- We should provide machine-interpretable but not machineuntreatable. Think of constrained devices in IoT.
- We should accept the fact that sometimes we do not need full semantic descriptions.

Semantic in oneM2M

 oneM2M offered minor semantic enhancement in release-1 and aims to provide full semantic support in the next releases.

Evolution of semantic in oneM2M

oneM2M base ontology model

oneM2M base ontology instance

sensinov

Mapping to vertical ontologies

Semantic oneM2M archtiecture

Generic data modeling for interworking

Interworking Proxy

Entity

Generic interworking using semantic

- Non oneM2M devices are described using the oneM2M base ontology + domain specific extensions.
- The Interworking Proxy Entity translates the ontology instance to resources on the CSE based on pre-defined instantiation rules.

oneM2M semantic challenges

- Access Rights management of semantic data
 - How to protect non open data in oneM2M ?
 - Include Access Control Policy in the oneM2M base ontology ?
- Semantic querying and discovery
 - SPARQL through « mca » interface ?
- Semantic reasoning
 - infer new knowledge for dynamic reconfiguration.
- Distributed triple store
 - How to connect remote triple store together. Via « mcc » oneM2M interface ?
- Performance and support of constrained environments

Thank you for your Attention

benalaya@sensinov.com www.sensinov.com